Newcastle University
Method 1: Single Thresholds
>>> a_bool = a > threshold
Method 2: Multiple Thresholds
flowchart TD
A["`Lsepal`"];
B["`Wsepal`"];
C["`Lpepal`"];
D["`Wpepal`"];
E["[1, 0, 0]"];
F["[0, 1, 0]"];
G["[0, 0, 1]"];
H["[0, 0, 0]"];
A -- 5.1 --> E;
B -- 3.5 --> F;
C -- 1.4 --> G;
D -- 0.2 --> H;
Method 3: Normalize to [0, 255] 8-bit
>>> x = (x - x.mean()) / x.std()
>>> x_norm = int(x * 255).astype(np.uint8)
Method 1: Discrete State
>>> def reward(self):
if self.state < self.N_state:
self.state += 1
>>> def penalty(self):
if self.state > 1:
self.state -= 1
Method 2: Continuous State
>>> def reward(self):
if self.state < self.N_state:
self.state += 0.9
>>> def penalty(self):
if self.state > 0:
self.state -= 0.1
Why does the pairwise learning only choose another ONE random class?
Can we feedback on all classes?